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Dynamically generated baryons states

chiral unitary approach
origin (interpretation) of resonance pole

form factor of baryon resonance
hadronic molecular states (kaonic few-body system)

In principle, all the hadron states are dynamically generated in QCD.
Discuss dynamically generated states in terms of hadronic degrees of freedom. 
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What are effective constituents in baryon resonance ??
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Effective constituents in hadron
constituent quarks confined in a single potential

hadrons interacting inter-hadron force

mixture of them

quark source + hadron cloud

ex. p-state excitation of quark for baryon resonances
     chiral partners: N(1535) chiral partner of nucleon ??

decaying resonance → large hadronic components

inter-hadron dynamics is important

- quarks and gluons are fundamental constituents of hadrons
but, current quarks are not effective constituents to understand hadron structure

in this picture, symmetry of quarks is realized in 
baryon spectra through constituent quarks
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Dynamical description of resonance
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Lippmann-Schwinger eq. T = V + V GT

G: loop function (model space)
ingredients

V: kernel potential (dynamics) given by chiral Lagrangian

guarantee unitarity

here we will see not all the states described in this way are hadronic composites 

take chiral unitary model as an example:  most of dynamical descriptions are based on the same concept but with different ingredients

calculate scattering amplitude, in which resonances are expressed as poles in complex energy plane

If these ingredients are written in terms of hadrons, the scattering amplitude 
is described by hadron dynamics. 

dynamically generated state

state obtained without explicit pole terms in kernel potential V 

explicit pole term represents state outside of model space (quark-origin state)

dynamically generated state = hadronic composite state ??
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Chiral unitary approach
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a la Chiral Perturbation Theory

contact interaction

V: kernel potential (dynamics)

- leading term (WT term)

- higher order terms

O(p2)

→ no source for s-channel baryon resonances

For interactions derived not from chiral effective theory, it is hard to interpret their origins.

interactions are well organized in terms of momentum expansion

explicit s-channel resonance contributions

contact terms also can have source of resonances

Once we use these interactions, the hidden resonances can be reconstructed. 

in these terms dynamics beyond hadronic description can be hidden

This kind of discussion is important for the interpretation of the resonance structure, but in the description of resonance how 
to construct the resonance is not an issue. 

coming from t-channel vector meson exchange

ex. Δ in higher order of πN chiral lagrangian 

in s-wave



D. Jido NSTAR2011@J-Lab

Chiral unitary approach
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G: loop function (model space)

G(s) = −a(s0)−
1
2π

� ∞

s+
ds�

�
ρ(s�)

s� − s− i�
− ρ(s�)

s� − s0

�
,

meson baryon loop function (regularization) once-subtracted 
dispersion relation

regularization → renormalization constant

ρ(s)two-body 
phase space

free parameters to be fitted by experiments

T = V + V GT
it is necessary to regularize the loop function

in the regularization procedure, one fixes high-momentum behavior which is not 
controlled in the present model space. This means that some contributions coming 
from outside of the model space can be hidden in the regularization parameters.

Here we show that the hidden contribution can be excluded from formulation by 
theoretical requirement on the renormalization constant.
(natural renormalization scheme)

( In cut-off scheme the situation is same. Form factors can have information off model space.)
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Natural renormalization scheme

6

G(M ; anatural) = 0
proposed in different contexts by Igi-Hikasa and Lutz-Kolomeitsev
natural size of a obtained in 3 dim. cutoff with 630 MeV

2) consistency with chiral (loop) expansion

1) consistency with meson-baryon picture

T (W ) = V (W ) at some point in M ≤W ≤M + m

G(W ) = 0

G(W ) ≤ 0
there are no states below the threshold

W ≤M + m
satisfied automatically by 3 
dim. cutoff regularization

“natural” renormalization condition G(W ) ∼
�

n

1
W − En

Let us propose a suitable renormalization condition for meson-baryon picture

since the loop function is a decreasing function in terms of energy below the 
threshold, these two conditions can be satisfied by 

Hyodo, Jido, Hosaka, PRC78, 025203 (‘08)

T = V + V GT
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Interpretation of pole
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Hyodo, Jido, Hosaka, PRC78, 025203 (‘08)

compare consequences from two different renormalization schemes

no source of state originated by quarks (out of model space)
if we use WT interaction in V and take natural renormalization scheme in G
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Pheno.

Natural

chiral unitary model

model parameters tuned so as to

b) exclude quark-origin 
    states theoretically

a) reproduce scattering data

＋ Natural

▲ Pheno.

Λ(1405) has mostly meson-baryon components.

V :  WT term

N(1535) needs some other components than meson-baryon.

pole positions of N(1535) and Λ(1405)

T (W ) =
1

V −1
WT (W )−G(W ; a)
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Interpretation of pole
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it is interesting to see which kind of interaction is necessary to reproduce phenomenological 
description in the natural renormalization. 

Λ(1405) successfully reproduced, N(1535) not so satisfactorily

in natural regularization with WT interaction,

T (W ) =
1

V −1(W ; anatural)−G(W ; anatural)

T (W ) =
1

V −1
WT (W )−G(W ; apheno.) VWT (W ) = − C

2f2
(W −M)

phenomenological renormalization condition

natural renormalization condition

Meff. ≡M − 2f2

C∆a
V (W ; anatural) = VWT (W ) +

C

2f2

(W −M)2

W −Meff.

WT term pole term

Finally the interaction kernel in the natural renormalization condition can be expressed as the WT term and a pole term. 

Hyodo, Jido, Hosaka, PRC78, 025203 (‘08)
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Interpretation of pole
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it is interesting to see which kind of interaction is necessary to reproduce phenomenological 
description in the natural renormalization. 

Λ(1405) successfully reproduced, N(1535) not so satisfactorily

in natural regularization with WT interaction,

G(M ; anatural) = 0T (W ) =
1

V −1(W ; anatural)−G(W ; anatural)

T (W ) =
1

V −1
WT (W )−G(W ; apheno.) VWT (W ) = − C

2f2
(W −M)

phenomenological renormalization condition

natural renormalization condition

Meff. ≡M − 2f2

C∆a
V (W ; anatural) = VWT (W ) +

C

2f2

(W −M)2

W −Meff.

WT term pole term

Finally the interaction kernel in the natural renormalization condition can be expressed as the WT term and a pole term. 

for N(1535)

for Λ(1405)
MN∗

eff. = 1693± 37i [MeV]
MΛ∗

eff. � 7.9[GeV]pole mass in
effective int. 

Do not take the values seriously, because these values strongly depend on the details of model parameters.

quark model state ? chiral partner of N ??

Hyodo, Jido, Hosaka, PRC78, 025203 (‘08)
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Applications of dynamical description
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although coupled channel approach can contain some components other than meson 
and baryon, this is a good description of resonances in terms of hadrons.

with this description, we can calculate properties of baryon resonances:

magnetic moments of Λ(1405)

radiative decay of Λ(1405)

helicity amplitudes of Λ(1670) and Λ(1405) 

electromagnetic mean squared radii of Λ(1405) 

DJ, Hosaka, Nacher, Oset, Ramos RPC66, 025203 (02)

Geng, Oset, Doring, EPJA32, 201 (07)

Sekihara, Hyodo, DJ, PLB669, 133 (08)

Doring, DJ, Oset EPJA45, 319 (10)

many applications for reaction calculations

coupled channel approach 
describes both resonance and nonresonant scattering states
available for direct comparison with experimental data

helicity amplitude of N(1535) DJ, Doring, Oset, PRC77, 065207 (08)

electromagnetic form factors of Λ(1405) Sekihara, Hyodo, DJ, PRC83, 055202(11)
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Transition amplitude in chiral unitary model
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Jido, Döring, Oset, PRC77, 065207 (08)

N(pi)

e
e�

γ∗(k)

N∗(P )

- take chiral unitary model for N(1535) structure

- external current couples via meson and baryon

Idea

meson pole term baryon pole term

Kroll-Ruderman term necessary for gauge invariance

relevant diagrams of one loop Gauge invariant assures
cancellation of divergence

1/M

Z-diagram
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Transition amplitude in chiral unitary model
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Jido, Döring, Oset, PRC77, 065207 (08)

N(pi)

e
e�

γ∗(k)

N∗(P )

- take chiral unitary model for N(1535) structure

- external current couples via meson and baryon

Idea

meson pole term baryon pole term

Kroll-Ruderman term necessary for gauge invariance

relevant diagrams of one loop Gauge invariant assures
cancellation of divergence

1/M

Z-diagram

elementary vertices
chiral Lagrangian chiral unitary approach

meson-baryon

M
B B

photon-meson

γ
M M

residue of pole

gi

N*B
M

photon-baryon

B B
γ

Kroll-Ruderman

B B
Mγ

gi characterizes structure of N*
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four-momentum transfer Q2 = −k2

W=1535 MeV

Non-relativistic calculation
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Result A1/2 amplitude for p*

Experimental data
B. Krusche et al., Phys. Rev. Lett. 74 (1995) 3736.
 H. Denizli et al. [CLAS Collaboration], Phys. Rev. C76, 015204 (2007)
 R. Thompson et al. [CLAS Collaboration], Phys. Rev. Lett. 86, 1702 (2001)
 F.W. Brasse et al., Nucl. Phys. B 139, 37 (1978); Z. Phys. C22, 33 (1984).
 U. Beck et al., Phys. Lett. B 51, 103 (1974).
 H. Breuker et al., Phys. Lett. B74, 409 (1978).

A1/2(Q2) =

�
WΓN∗

2mpbη
σ(W,Q2)

Experimental extraction

T ∼ �ηN |Hη|N∗��N∗|Hγ |γN�
photo-transition

Γ∗
N

bη

N* total width

branching ratio

Data     150 MeV
ChUM   74 MeV

Data      55%
ChUM   70%

factor 1.6 larger

σ: total cross section of γp → ηp

Jido, Döring, Oset, PRC77, 065207 (08)
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four-momentum transfer Q2 = −k2

W=1535 MeV

Non-relativistic calculation
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Jido, Döring, Oset, PRC77, 065207 (08)
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Further results
Values of A1/2 at Q2=0

p* 64.88

[10-3 GeV-1/2]

n* -51.54+7.21i

n*/p* -0.79+0.11i
0.80

IV/IS 8.94-1.06i
9.00

isovector dominance

Ratios of A1/2

-46±27
90±30

-0.84±0.15
0.819±0.018modulus 

modulus 10.0±0.7

S1/2 amplitude for p*
negative phase respect to A1/2

consistent with data

our model PDG

Exp.our model free from norm. problem

need to fix normalization

Jido, Döring, Oset, PRC77, 065207 (08)
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What we learn
- Transition form factors of N* calculated in 
meson-baryon picture are consistent with data

- meson-baryon component in N(1535)
sources of resonances in regularization constant
no coupling of photon to quarks 

need to determine N* parameters precisely
normalization problem of helicity amplitudes

A1/2 and S1/2 for p*
n/p ratio of A1/2 at Q2=0
total cross section of γp → ηp

sign and magnitude

N(1535) structure : chiral unitary model 
meson cloud picture for photon couplings

quark component less important in helicity amplitude in low Q2

Jido, Döring, Oset, PRC77, 065207 (08)

16
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Form factors of Λ(1405)
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theoretical calculation (chiral unitary model)

Sekihara, Hyodo, DJ, PLB669, 133 (2008); 
PRC83, 055202 (2011)

Λ(1405): quasibound state of KbarN with 10~30 MeV

CZ10210 PRC April 28, 2011 6:40

TAKAYASU SEKIHARA, TETSUO HYODO, AND DAISUKE JIDO PHYSICAL REVIEW C 00, 005200 (2011)

Here we note that the magnetic interactions of the excited
baryons are obtained only from the baryonic dynamics, since
in our approach the spinless meson is bound by the baryon
in s-wave channel and the spatial component of the MM ′γ
couplings do not contribute to the magnetic interactions in the
Breit frame of the excited baryons.

In order to study the internal structure of the "(1405)
theoretically, we also consider the form factors probed with
the baryonic and strangeness currents. For the baryonic and
strangeness current interactions, we replace the meson and
baryon electric charges with the corresponding quantum
numbers, namely the baryon number and strangeness of the
mesons and baryons:

QM = 0, QB = 1, (46)

for the baryonic current and

Qπ = Qη = QN = 0,

QK̄ = Q" = Q% = −1, (47)

QK = 1, Q& = −2,

for the strangeness current. Then we consider the time com-
ponents as the form factors for the baryonic and strangeness
current interactions, as described below Eq. (6). Since the
baryonic and strangeness form factors are calculated by the
time component of the current, we do not need the counterparts
of the matrices Xij and Yij given in Eq. (43), which contribute
to the spatial component.

E. Calculation of photon-coupled meson-baryon amplitudes

Now we discuss the details of the calculation of the
scattering amplitude of the MBγ ∗ → M ′B ′ process in the
chiral unitary approach, in which the amplitude for the MB →
M ′B ′ is given by multiple scattering of the meson and baryon.

One of the most important issues we take account of is
the charge conservation in the calculation of the scattering
amplitude for the MBγ ∗ → M ′B ′ process. This ensures the
correct normalization of the form factor of the excited baryon,
FE(Q2 = 0) = QEM, FB(Q2 = 0) = B = 1, and FS(Q2 =
0) = S. Following the method proposed in Refs. [28,48,64],
to calculate the form factors we take three relevant diagrams
shown in Fig. 3, which contain the double-pole terms for the
resonance states. Although charge conservation requires seven
other diagrams as shown in Fig. 4 for the general amplitude T µ

γ

[64], these diagrams cannot contribute to the matrix elements

at the resonance pole calculated by Eq. (19), since these terms
have at most a single pole [28]. This means that, on the
resonance pole, the charge conservation is maintained by only
three diagrams shown in Fig. 3. Summing up the diagrams in
Fig. 3, we obtain the relevant amplitude for the evaluation of
the form factors:

T
µ
γ ij ≡ T

µ
γ (1)ij + T

µ
γ (2)ij + T

µ
γ (3)ij . (48)

These contributions can be expressed by the combination of the
BS amplitude and the elementary couplings discussed before,
according to the Feynman diagrams given in Fig. 3. In the Breit
frame, in which the momenta of the photon and the "(1405)
before photon coupling are expressed as qµ = (0, q) and
P µ = (

√
s + q2/4, −q/2), respectively, their explicit forms

are written as

T
µ
γ (1)ij =

∑

k

Tik(
√

s)Dµ
Mk

(
√

s; Q2)Tkj (
√

s), (49)

T
µ
γ (2)ij =

∑

k

Tik(
√

s)Dµ
Bk

(
√

s; Q2)Tkj (
√

s), (50)

T
µ
γ (3)ij =

∑

k,l

Tik(
√

s)Gk(
√

s)'µ
kl(

√
s; Q2)Gl(

√
s)Tlj (

√
s),

(51)

where the vertex '
µ
kl is given in Eq. (45) and the loop integrals

with the photon couplings to the meson and baryon are given
by

D
µ
Mk

(
√

s; Q2)

≡ i

∫
d4q1

(2π )4

2Mk

(P − q1)2 − M2
k + iε

1
(q1 + q)2 − m2

k + iε

×
[
V

µ
Mk

(q1, q1 + q)
] 1
q2

1 − m2
k + iε

, (52)

D
µ
Bk

(
√

s; Q2)

≡ i

∫
d4q1

(2π )4

1
q2

1 − m2
k + iε

2Mk

(P + q − q1)2 − M2
k + iε

×
[
V

µ
Bk

(P − q1, P − q1 + q)
] 2Mk

(P − q1)2 − M2
k + iε

.

(53)

In the Breit frame s = P µPµ = (P + q)µ(P + q)µ and
2P µqµ = q2 = Q2 ! 0 and DM , DB , and ' are functions
of

√
s and Q2. The function DM (DB) at Q2 = 0 is related to

Tµ
γ(1) Tµ

γ(2) Tµ
γ(3)

FIG. 3. Diagrams for the T µ
γ which contain the double-pole terms of the excited baryon [28,48,64]. The shaded ellipses represent the

BS amplitude. The dashed, solid, and wiggly lines correspond to the ground-state meson, the ground-state baryon, and the probe current,
respectively.

005200-8



D. Jido NSTAR2011@J-Lab

Form factors of Λ(1405)
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III. NUMERICAL RESULTS

In this section, we discuss the internal structure of the
resonant !(1405) state. We will show the numerical results
of the !(1405) form factors measured by the electromag-
netic, baryon number, and strangeness currents in momentum
space. We will also show the spatial density distributions in
coordinate space which are obtained by performing Fourier
transformation of the form factors.

The calculation of the form factor is performed in two
ways; one is on the !(1405) pole position (Sec. III A) and
the other is to evaluate the effective form factor (21) on
the real energy axis around the resonance energy region√

s ∼ 1420 MeV (Sec. III B). On the !(1405) pole position,
the internal structure of the resonance can be obtained in a way
to keep charge conservation without nonresonant background
contributions. The results, however, may not be directly
compared with experimental observables. The effective form
factor on the real energy axis, on the other hand, may be
determined in experiments, but the obtained form factors have
both the resonant and nonresonant contributions.

For a reference of the electric size of the typical neutral
baryon, we will compare the electric !(1405) form factor
with an experimental fit of neutron electric form factor [65],

Fn
E(Q2) = − aµnτ

1 + bτ

(
!2

!2 + Q2

)2

, τ = Q2

4M2
n

(63)

with a = 1.25, b = 18.3, !2 = 0.71 GeV2, the neutron mass
Mn, and the neutron magnetic moment µn = −1.913 µN ,
where µN is the nuclear magneton.

We also compare the results of magnetic, baryonic, and
strangeness form factors with a dipole type form factor

Fdipole(Q2) = c

(
!2

!2 + Q2

)2

, (64)

with !2 = 0.71 GeV2, which reproduces well the observed
nucleon magnetic form factor [66]. The overall factor c will

be adjusted to the normalization of the form factor of the
!(1405) in question.

A. Form factors on the resonance pole

Here we discuss the internal structure of the !(1405)
using the form factors obtained at the pole position in the
complex energy plane. We evaluate the form factors of the
higher !(1405) state, Z2, from two !(1405) states, since this
state gives the dominant contribution to the spectrum and is
considered to originate from the K̄N bound state. The form
factors of the !(1405) at the resonance position are obtained
by Eq. (19) together with the amplitudes calculated in Eqs. (31)
and (48).

1. Electromagnetic, baryonic, and strangeness structures

First, we show our results of the electric and magnetic form
factors in Fig. 5 together with the empirical form factors of
the neutron given in Eqs. (63) and (64). The normalization
parameter is given by the real part of the magnetic moment
of the !(1405), c = Re[FM (Q2 = 0)]. Here, in order to see
the finite-size effects of the constituent hadrons, we also show
results without the common form factor (CFF) introduced in
Eq. (59). The finite-size effects make the magnitude of the form
factors reduced, especially in the large Q2 region. Hereafter,
we show only the results with the CFF unless explicit details
are provided.

Now let us discuss the electromagnetic form factors of
the resonant !(1405) shown in Fig. 5. The form factors FE

and FM contain the imaginary parts, since they are evaluated
on the resonance pole position in the complex energy plane.
However, we obtain the imaginary parts in smaller magnitude
than the real parts. This is the consequence of the relatively
small imaginary part of the pole position of Z2, since the form
factors are real numbers in the limit of zero imaginary part of
the pole position. For the charge neutral !(1405), deviation
from zero in the electric form factor indicates that the !(1405)
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FIG. 5. Electromagnetic form factors of the !(1405) state on the higher pole position Z2, together with the empirical form factors of the
neutron. Left (right) panel shows the electric (magnetic) form factor FE (FM ). The label “w/o CFF” represents the result without inclusion
of the common form factor in Eq. (59). The parameter c in the dipole form factor is chosen to be c = Re[FM (Q2 = 0)], the real part of the
magnetic moment of the !(1405).

005200-10

Sekihara, Hyodo, DJ, PLB669, 133 (2008); 
PRC83, 055202 (2011)
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Form factors of Λ(1405)
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Electromagnetic radii

theoretical calculation (chiral unitary model)

Sekihara, Hyodo, DJ, PLB669, 133 (2008); 
PRC83, 055202 (2011)

|�r2�E| = 0.33 [fm2]

�r2�E = −0.52 [fm2]

�r2�E = −0.13 + 0.30i [fm2]

complex number

moduls

remove decay chan.

negative
charge radius

Λ(1405): quasibound state of KbarN with 10~30 MeV

K- spreads widely around proton

almost real Kaon surrounding nucleon

�r2�E = −0.12 [fm2]

spatially 
extended larger radius than neutron charge radius

virtual pion cloud
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Here we note that the magnetic interactions of the excited
baryons are obtained only from the baryonic dynamics, since
in our approach the spinless meson is bound by the baryon
in s-wave channel and the spatial component of the MM ′γ
couplings do not contribute to the magnetic interactions in the
Breit frame of the excited baryons.

In order to study the internal structure of the "(1405)
theoretically, we also consider the form factors probed with
the baryonic and strangeness currents. For the baryonic and
strangeness current interactions, we replace the meson and
baryon electric charges with the corresponding quantum
numbers, namely the baryon number and strangeness of the
mesons and baryons:

QM = 0, QB = 1, (46)

for the baryonic current and

Qπ = Qη = QN = 0,

QK̄ = Q" = Q% = −1, (47)

QK = 1, Q& = −2,

for the strangeness current. Then we consider the time com-
ponents as the form factors for the baryonic and strangeness
current interactions, as described below Eq. (6). Since the
baryonic and strangeness form factors are calculated by the
time component of the current, we do not need the counterparts
of the matrices Xij and Yij given in Eq. (43), which contribute
to the spatial component.

E. Calculation of photon-coupled meson-baryon amplitudes

Now we discuss the details of the calculation of the
scattering amplitude of the MBγ ∗ → M ′B ′ process in the
chiral unitary approach, in which the amplitude for the MB →
M ′B ′ is given by multiple scattering of the meson and baryon.

One of the most important issues we take account of is
the charge conservation in the calculation of the scattering
amplitude for the MBγ ∗ → M ′B ′ process. This ensures the
correct normalization of the form factor of the excited baryon,
FE(Q2 = 0) = QEM, FB(Q2 = 0) = B = 1, and FS(Q2 =
0) = S. Following the method proposed in Refs. [28,48,64],
to calculate the form factors we take three relevant diagrams
shown in Fig. 3, which contain the double-pole terms for the
resonance states. Although charge conservation requires seven
other diagrams as shown in Fig. 4 for the general amplitude T µ

γ

[64], these diagrams cannot contribute to the matrix elements

at the resonance pole calculated by Eq. (19), since these terms
have at most a single pole [28]. This means that, on the
resonance pole, the charge conservation is maintained by only
three diagrams shown in Fig. 3. Summing up the diagrams in
Fig. 3, we obtain the relevant amplitude for the evaluation of
the form factors:

T
µ
γ ij ≡ T

µ
γ (1)ij + T

µ
γ (2)ij + T

µ
γ (3)ij . (48)

These contributions can be expressed by the combination of the
BS amplitude and the elementary couplings discussed before,
according to the Feynman diagrams given in Fig. 3. In the Breit
frame, in which the momenta of the photon and the "(1405)
before photon coupling are expressed as qµ = (0, q) and
P µ = (

√
s + q2/4, −q/2), respectively, their explicit forms

are written as

T
µ
γ (1)ij =

∑

k

Tik(
√

s)Dµ
Mk

(
√

s; Q2)Tkj (
√

s), (49)

T
µ
γ (2)ij =

∑

k

Tik(
√

s)Dµ
Bk

(
√

s; Q2)Tkj (
√

s), (50)

T
µ
γ (3)ij =

∑

k,l

Tik(
√

s)Gk(
√

s)'µ
kl(

√
s; Q2)Gl(

√
s)Tlj (

√
s),

(51)

where the vertex '
µ
kl is given in Eq. (45) and the loop integrals

with the photon couplings to the meson and baryon are given
by

D
µ
Mk

(
√

s; Q2)

≡ i

∫
d4q1

(2π )4

2Mk

(P − q1)2 − M2
k + iε

1
(q1 + q)2 − m2

k + iε

×
[
V

µ
Mk

(q1, q1 + q)
] 1
q2

1 − m2
k + iε

, (52)

D
µ
Bk

(
√

s; Q2)

≡ i

∫
d4q1

(2π )4

1
q2

1 − m2
k + iε

2Mk

(P + q − q1)2 − M2
k + iε

×
[
V

µ
Bk

(P − q1, P − q1 + q)
] 2Mk

(P − q1)2 − M2
k + iε

.

(53)

In the Breit frame s = P µPµ = (P + q)µ(P + q)µ and
2P µqµ = q2 = Q2 ! 0 and DM , DB , and ' are functions
of

√
s and Q2. The function DM (DB) at Q2 = 0 is related to

Tµ
γ(1) Tµ

γ(2) Tµ
γ(3)

FIG. 3. Diagrams for the T µ
γ which contain the double-pole terms of the excited baryon [28,48,64]. The shaded ellipses represent the

BS amplitude. The dashed, solid, and wiggly lines correspond to the ground-state meson, the ground-state baryon, and the probe current,
respectively.

005200-8
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Form factors of Λ(1405)
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Electric charge distribution

negative
charge radius K- spreads widely around proton

13
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FIG. 7: Normalized distributions 4πr2ρ(r) of charge (PE, left) and magnetic moment (PM, right) densities of the Λ(1405) state
on the higher pole position Z2. Empirical charge distribution in the neutron is evaluated by Eq. (63). Line denoted as “Dipole”
in magnetic moment density is evaluated by Eq. (64) with c = Re[FM(Q2 = 0)].
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FIG. 8: Baryonic (PB) and strangeness (PS) density distribu-
tions of the Λ(1405) state on the higher pole position Z2. The
strangeness density distribution is presented with the opposite
sign for comparison. Typical density of nucleon is evaluated
by Eq. (64) with c = 1.

TABLE II: Electromagnetic (upper), baryonic and
strangeness (lower) mean squared radii of the Λ(1405),
〈r2〉E, 〈r2〉M, 〈r2〉B, and 〈r2〉S, on the higher resonance pole
position Z2.

〈r2〉E −0.157 + 0.238i fm2

〈r2〉M 1.138 − 0.343i fm2

〈r2〉B 0.783 − 0.186i fm2

〈r2〉S −1.097 + 0.662i fm2

of the mean squared radius. The results are shown in
Table II. We find that the absolute value of the electric
(magnetic) mean squared radius is |〈r2〉E| # 0.29 fm2

(|〈r2〉M| # 1.19 fm2), which is about two times larger

than that of the neutron ∼ −0.12 fm2 (∼ 0.66 fm2).
Also the absolute values of the baryonic and strangeness
mean squared radii are larger than the typical size of nu-
cleon. We also observe in Table II larger radius of the
strangeness distribution than the baryonic one. This is
due to the effect of the longer tail in strangeness density
distribution compared with the baryonic one. Therefore,
these results support that the resonant Λ(1405) state has
a spatially-extended structure compared with the typical
baryon size ! 1 fm.

As a consequence, all of the results for the electromag-
netic, baryonic, and strangeness structures show that the
resonant Λ(1405) has a large size compared with typical
hadrons. Furthermore, it is interesting to observe that
the strangeness density distribution of the Λ(1405) has
longer tail than the baryonic one. Since the Λ(1405) (Z2)
is dominated by the K̄N component and K̄ (N) carries
the strangeness (baryon number), one can expect that
such behaviors of the strangeness and baryonic distribu-
tions are understood by the widely spread K̄ distribution
around N inside the Λ(1405). This expectation is sup-
ported by the charge distribution, since it has positive
values in the inner part whereas negative values in the
outer part, which will be caused by the K−p component
inside the Λ(1405). In the next subsection, we will clarify
these detailed structure of the Λ(1405) by decomposing
the form factors and density distributions into the con-
tribution from each meson-baryon component.

2. Contribution from each meson-baryon component

In order to discuss the inner structure of the Λ(1405)
resonance in the theoretical point of view, it is interest-
ing to decompose the form factors into the contribution
from each meson-baryon state to which the external cur-
rent couples. This decomposition can be done by calcu-

Sekihara, Hyodo, DJ, PLB669, 133 (2008); 
PRC83, 055202 (2011)
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Hadronic molecular states
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Hadronic molecular state
hadrons are constituents（nesting-box structure, Verschachtelung）
governed by hadron dynamics, not inter-quark dynamics (confinement force)

inter-hadron distance > confinement size

larger than typical size of hadron

ex）nucleus：bound state of baryons
deuteron, 3He, triton (NNN), hypertriton (Λpn)

Meson constituents

absorptive decay modes, no meson number conservation
transition to lighter mesons (pion)

resonance with decay width (quasibound state)

real particles are constituents
different from virtual pion cloud
physics of threshold

Λ(1405)

N K
ー

KbarNN

NN
K
ーN π
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size of bound state
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for short range interaction

�x2� =
1

4µBE

ψ(x) = (const.)×
exp

�
−
√

2µBEx
�

x

asymptotic wavefunction μ: reduced mass
BE: binding energy

relative distance 
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FIG. 17: Interaction strength needed to generate a bound
state with different binding energies, CB. In the figure,
Mbound represents the mass of the bound state.

In this study we define the mean squared distance as the
average of the values evaluated from the K̄ and N radii,
and we obtain the mean squared distance between K̄ and
N as

〈x2〉K̄N = 2.848 fm2, (72)

for the K̄N bound state with binding energy 10 MeV.

B. K̄N system with different binding energies

Here we discuss the K̄N bound state with different
binding energies, in order to see the dependence of the
structure on the binding energy. This can be achieved by
replacing the interaction strength C = 3 for K̄N(I = 0)
in Eq. (25) with CB representing an interaction strength
for K̄N to generate a bound state with a specified bind-
ing energy BE, and we keep the subtraction constant
aK̄N = −1.95 in order to exclude the explicit pole con-
tribution. In Fig. 17 we plot interaction strength CB as
a function of the binding energy BE.

We prepare the models for the K̄N bound states and
show the electric, K̄, and N mean squared radii as func-
tions of the binding energy BE in Fig. 18. It is obvious
that the distribution of the constituent hadrons in the
K̄N bound state spreads if the binding energy decreases,
in accordance with our expectation from quantum me-
chanics. In addition, the mean squared radii are much
sensitive to the binding energy in the near-threshold re-
gion (BE ! 10 MeV), which indicates that for the shallow
bound state the binding energy is a key quantity for the
spatial structure of the bound state. We also note that
the K̄ distribution in the K̄N bound system is most sen-
sitive to the binding energy in this region, since the K̄ is
lighter than the N . In the large binding energy region,
the K̄ and N mean squared radii asymptotically goes to
finite values rather than zero, but not such as the electric
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FIG. 18: Mean squared radii of K̄N bound state with different
binding energies. In the figure, Mbound represents the mass
of the bound state.
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FIG. 19: Mean squared distance between K̄ and N in the
bound system in our approach (solid line), together with that
obtained from the nonrelativistic wave function ψ(x) (dashed-
dotted line, denoted as “NR”). In the figure, Mbound repre-
sents the mass of the bound state.

one. This behavior in the large binding energy region is
caused by that the distributions of both K̄ and N shrink
to the finite K̄ and N radii and get close to each other,
which leads to almost zero electric mean squared radius.

Next let us make a simple comparison of our results of
mean squared radii, which is based on the field theory,
with that of the nonrelativistic wave function of the two-
body bound state. Outside the interaction range Rint the
nonrelativistic wave function for the bound state takes
an asymptotic form ∼ exp

(
−
√

2µBEx
)
/x in the rela-

tive coordinate with the distance x and the reduced mass
µ = MNmK̄/(MN + mK̄) = 324 MeV. Here we adopt a
simple form having the correct asymptotic behavior,

ψ(x) = (const.) ×
exp

(
−
√

2µBEx
)

x
, (73)

KbarN system

for bound state with 30 MeV B.E

KbarN system ~ 1 fm size

typical hadron size ~ 1 fm

for deeper bound states
two hadron are overlapped 
quark dynamics should be relevant
picture of hadronic molecular is broken down

hadronic molecular states can be realized in limited situation.
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Peculiarities of K meson
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Y. Kanada-En’yo, DJ, PRC78, 025212 (2008) 
DJ, Y. Kanada-En’yo, PRC78, 035203 (2008)

- Nambu-Goldstone boson

strong s-wave attraction in KbarN and KbarK ⇒ two-body quasibound states

smaller mass compared with typical hadron mass scale
chiral effective theory can be applied

- heavy particle

non-relativistic potential model with decay channels

mK = 495.7 MeV
mN = 938.9 MeV

isospin averaged mass

half of nucleon mass
small kinetic energy in bound systems (BE ~ 10-30 MeV)

Kaons are different from pions in the energies of our interest !!

pion is too light to be bound in range of strong interaction

kaon has moderate mass and interaction strength

Λ(1405) f0(980), a0(980) K
K
ー

N K
ー

B.E. ~ 10 to 30 MeV B.E. ~ 10 MeV
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                system with I=1/2, JP=1/2+

24

KK̄N
A prediction of KKbarN quasibound state as an N* resonance

DJ, Y. Kanada-En’yo, PRC78, 035203 (2008)

N*

Interactions in KKbarN system

K̄N Λ(1405) weak attraction 1434.6 MeV

I=0 I=1 threshold

KK̄ f0(980) a0(980) 991.4 MeV

KN strong repulsionvery weak 1434.6 MeV

attraction

repulsion

molecular picture broken downif 3-body BS << 2-body BS + hadron

open channels

πΣ,πΛ

ππ,πη

no

Λ(1405)

f0(980), a0(980) 
JP=1/2+ N

K K
ー

K
K
ー

N K
ー
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Theoretical studies of KKbarN system
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1) non-relativistic potential model

two-body interaction

KbarN Λ(1405) as a quasibound state

KbarK f0(980) and a0(980) as quasibound states

KN adjust repulsive scattering length

N*
JP=1/2+

2) relativistic Faddeev approach

two-body subsystem

meson-baryon

meson-meson

scattering amplitudes obtained by chiral unitary model in full coupled-channels

KKbarN single channel

coupled channels, KKbarN, KπΣ, KπΛ

dynamically generated Λ(1405)

dynamically generated f0(980) and a0(980) 
non-resonant background

DJ, Y. Kanada-En’yo, PRC78, 035203 (2008)

Martinez Torres, Khemchandani, Oset, PRC79, 065207 (2009)

Martinez Torres, DJ, PRC82, 038202 (2010)

N
K K

ー
fix two-body interaction → calculate three-body system
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Results of KKbarN system     N* at 1910 MeV
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- loosely bound system

B.E. from KKbarN  width

HW: 19 MeV 88 MeV
AY:  39 MeV 98 MeV

DJ, Y. Kanada-En’yo, PRC78, 035203 (2008)

N*

threshold of KKbarN  1930 MeV

Martinez Torres, Khemchandani, Oset, PRC79, 065207 (2009)

1) non-relativistic potential model

2) relativistic Faddeev approach

Martinez Torres, DJ, PRC82, 038202 (2010)
mass: 1922 MeV, width ～25 MeV
1426 MeV in KbarN,  988 MeV in KbarK

(KK̄N,KπΣ, KπΛ)
read peak position and width 

(KK̄N) same result

This state is essentially described by KKbarN single channel 
in three-body configuration

1911 MeV

 mass

1891 MeV

Xie, Torres, Oset, arXiv:1010.6164also found in calculation with fixed centre approximation 

N
K K

ー
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Structure of N*(1910)
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r.m.s radius: 1.7 fm
hadron-hadron distances are comparable 
with nucleon-nucleon distances in nuclei

mean hadron density: 0.07 hadrons/fm3

Λ(1405)+K

a0(980)+N

- coexistence of two quasi-bound
  states keeping their characters

πΣK
πηN

- main decay modes

from Λ(1405)

from a0(980)

2.1 fm
(1.4)

2.3 fm
(2.1)

2.8 fm
(2.3)

Λ(1405) a0(980)

spatial structure

Λ(1405)
HW: 1.9 fm
AY:  1.4 fm

a0(980) 

HW: 2.1 fm
AY:  2.2 fm

cf. 1.4 fm for 4He

0(980)(1405)

K

a
KN

DJ, Y. Kanada-En’yo, PRC78, 035203 (2008)1) relativistic potential model

N K

K
ー N

Kー
K

Kー
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KbarKK system
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A. Martinez Torres, DJ, Y. Kanada-En’yo, 
arXiv:1102.1505 [nucl-th]K*

JP=0-

potential model
threshold: 1488 MeV

1467 MeV (BE: 21 MeV),  width 110 MeV

Faddeev 1420 MeV,  width ~50 MeV

Kaon Ball

KbarK Inv.Mass : 983 MeV (I=0), 950 MeV (I=1)

r.m.s radius: 1.6 fm

spatial structure obtained in potential model

K-K distance: 2.8 fm
(KK)-Kbar distance: 1.7 fm

K
ー KK

[            ]sym
2.8

1.7

Kー
K K

2.6

1.6

K1

K2Kー

before symetrization ...

K2-Kbar distance: 1.6 fm
K1-(K2Kbar) distance: 2.6 fm

f0(980)

role of repulsive KK interaction 
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KbarKK system
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A. Martinez Torres, DJ, Y. Kanada-En’yo, 
arXiv:1102.1505 [nucl-th]K*

JP=0-

potential model
threshold: 1488 MeV

1467 MeV (BE: 21 MeV),  width 110 MeV

Faddeev 1420 MeV,  width ~50 MeV

K(1460) seen in Kππ 
partial wave analyses

Kaon Ball

PDG

large width

omitted from summary table

- also found in f0(980)K, a0(980)K two-body systems Albaladejo, Oller, Roca, PRD82, 094019 (2010)

KbarK Inv.Mass : 983 MeV (I=0), 950 MeV (I=1)

K
ー KK
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Family of kaonic few-body nuclear systems
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N*
JP=1/2+

K*
JP=0-

KbarN and KbarK interactions are “similar” in a sense of chiral dynamics

Λ(1405) f0(980), a0(980)

pion is too light to be bound in range of strong interaction

K
K
ー

f0(980), a0(980) 

BE ~10 MeV

N K
ー

Λ(1405)

BE ~10 MeV
        (or more)

NN
K
ー

KbarNN

BE ~20 MeV 
         (or more)

N
K K

ー
KbarKN

BE ~20 MeV

K
ー KK

KbarKK

BE 20~60 MeV
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Exotic Hadrons from Heavy Ion Collision
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compact multi-quark system 
             vs 
loosely bound hadronic molecular system
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A. Andronic, P. Braun-Munzinger, J. Stachel, 
NPA772('06)167.

Basic ideas
- heavy ion collision as a factory of exotic hadrons
- extract hadron structure from production rates

Cho et al. (ExHIC collaboration), arXiv:1011.0852
to be published in Phys. Rev. Lett.
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Hadron coalescence vs Quark coalescence
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Mol

Coal./Stat. ratio: Rh=Ncoal/Nstat

Normal hadrons
→ 0.2 < Rh < 2 (Normal band)

Multi-quark states
→ Rh < 0.3

Hadronic molecules
→ Large yields (Rh > 2)
     for weakly bound states

hadron coalescence after hadronization

Cho et al. (ExHIC collaboration), arXiv:1011.0852
to be published in Phys. Rev. Lett.
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Summary
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coupled channels approach (chiral unitary model) provides us with

all contents of the models are hadrons.
but, obtained hadron resonances are not necessarily hadronic composite objects.
source of quark dynamics can be hidden everywhere 
(interaction terms, form factors, CDD poles,...)
thus, detailed theoretical analyses necessary to interpret the structure

microscopic description in terms of hadrons

hadronic description

calculation of form factors

dynamical description in meson-baryon scattering

describe both resonance and nonresonant scattering simultaneously
applicable to reaction calculation

fundamental interactions are based on chiral effective theory
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Summary
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hadron resonances composed by low-lying hadrons
hadronic molecular states

Λ(1405) f0(980), a0(980) 

new category of resonance

effective constituents in baryons structure
constituent quarks in low-lying baryons

heavy ion collision

hadrons can be effective constituents in some hadron resonances

unique role of Kaon

N* K*

KbarKN KbarKK

production rates
factory of exotic hadrons

self-bound systems
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Collaborators
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origin (interpretation) of resonance pole

form factor of baryon resonance

kaonic few-body system

T. Hyodo, A. Hosaka Hyodo, DJ, Hosaka, PRC78, 025203 (08)

M. Döring, E. Oset

T. Sekihara, T. Hyodo

Y. Kanada-En’yo, A.M. Torres

A. Martinez Torres, DJ, Y. Kanada-En’yo, 
arXiv:1102.1505 [nucl-th]

DJ, Y. Kanada-En’yo, PRC78, 035203 (08)

Martinez Torres, DJ, PRC82, 038202 (10)

Sekihara, Hyodo, DJ, PLB669, 133 (08); 
PRC83, 055202 (11)

DJ, Döring, Oset, PRC77, 065207 (08)
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Kaonic few-body nuclear system
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single channelsingle channel coupled channelcoupled channelcoupled channel
ATMS Variational Faddeev Faddeev Variational

Akaishi, Yamazaki Dote, Hyodo, 
Weise

Shevchenko, Gal, 
Mares Ikeda, Sato Wycech, Green

B.E. [MeV] 48 17-23 50-70 60-95 40-80

Width[MeV] 61 40-70 90-110 45-80 40-85

biding energies of KbarNN system

few body nuclear systems with one kaon Nogami, PL7, 288 (1963)
Akaishi, Yamazaki, PRC64,044005 (02)

KbarNNΛ(1405)

achievement in theory：bound with a large width

issue is whether πΣ is active or not

BE: 10 or 30 MeV single or coupled channel

N K
ー NN

K
ー


